

Defence Research and Recherche et développement
Development Canada pour la défense Canada

AISS Miro Manual
A Rough Guide

J. Giesbrecht, J. Collier, G. Broten, S. Verret, S. Monckton
DRDC Suffield

Technical Memorandum

DRDC Suffield TM 2006-115

December 2006

AISS Miro Manual
A Rough Guide

J. Giesbrecht, J. Collier, G. Broten, S. Verret and S. Monckton
Defence R&D Canada – Suffield

Defence R&D Canada – Suffield
Technical Memorandum
DRDC Suffield TM 2006-115
December 2006

Principal Author

 Original signed by J. Giesbrecht

J. Giesbrecht

 Approved by

 Original signed by D.M. Hanna

D. M. Hanna

Head/AISS

Approved for release by

 Original signed by Dr P.A. D’Agostino

Dr P. A. D'Agostino

Head/Document Review Panel

© Her Majesty the Queen in Right of Canada as represented by the Minister of National
Defence, 2006

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense
nationale, 2006

Abstract

The Autonomous Land Systems (ALS) and Cohort projects undertaken by the
Autonomous Intelligent System Section (AISS) at Defence R&D Canada – Suffield research
and develop autonomous unmanned vehicles. A software architecture provides a common
software framework allowing researchers to easily implement, test, and share their research
or algorithms. After a thorough review of existing robotics toolkits, the “Miro” framework
was chosen as a basis on which to build DRDC’s Architechture for Autonomy. This
document gives the reader background on “Miro” and the detailed procedure used to install
the toolkit and all associated applications. Second, the basic concepts of “Miro” are
described including the Interface Definition Language, Naming Service, Polled Mode Data
Transfer, Event Driven Data Transfer and the Miro Directory Structure. Third, various
“Miro” utilities and several “Miro” examples are described. Finally, more detailed “Miro”
examples including how to add services to the Automake structure, the OMG Interface
Definition Language and Parameter Files are discussed.

Résumé

Les projets Systèmes terrestres autonomes (STA) et Cohort entrepris par la Section des
systèmes intelligents autonomes (SSIA) à R & D pour la défense – Suffield effectuent la
recherche et la mise au point des véhicules autonomes sans équipage. Une architecture
logicielle procure un cadre conceptuel de logiciels commun permettant aux chercheurs
d’implémenter les essais, de les tester facilement et de mettre leur recherche ou algorithmes
en commun. Après avoir effectué une étude approfondie des trousses à outils de logiciels
robotiques existants, le cadre conceptuel « Miro » a été choisi comme base sur laquelle
construire Architecture pour l’autonomie de RDDC. Ce document fait l’historique de
« Miro » pour le lecteur et lui donne la procédure détaillée ayant été utilisée pour installer la
trousse à outils et toutes les applications qui y sont reliées. Les concepts de base de « Miro »
sont décrits en second, y compris le langage de définition de l’interface, les services de
dénomination, le transfert de données par appels sélectifs, le transfert de données guidé par
l’événement et la structure de répertoire de Miro. Troisièmement, on y décrit une variété de
logiciels utilitaires et plusieurs exemples « Miro ». Enfin, on discute d’exemples additionnels
détaillés « Miro » dont comment ajouter des services à la structure Automake, au Langage de
définition ayant une interface GOM et aux fichiers de paramètres.

DRDC Suffield TM 2006-115 i

This page intentionally left blank.

ii DRDC Suffield TM 2006-115

Executive summary

AISS Miro Manual

J. Giesbrecht, J. Collier, G. Broten, S. Verret, S. Monckton; DRDC Suffield TM 2006-115;
Defence R&D Canada – Suffield; December 2006.

Background: The Autonomous Land Systems (ALS) and Cohort projects, undertaken by
the Autonomous Intelligent System Section (AISS) at Defence R&D Canada – Suffield,
research and develop autonomous unmanned vehicles. In order for this research to
progress, a software architecture is required that allows researchers to develop, implement
and test their research. Such an architecture provides a common software framework
through which Defence Scientists can easily collaborate. This collaboration is especially
important for complex undertakings such as autonomous systems. After a thorough review
of existing robotics toolkits, the “Miro” framework was chosen as the framework for
DRDC work.

Principal Results: The Miro framework enables software programs distributed across a
network to transparently communicate with each other. It contains many powerful tools
that allow software components and algorithms to be combined for autonomous robotic
systems applications. Miro also contains utilities commonly required in developing robot
systems, such as the logging and playback of vehicle data. Using the Miro framework an
individual researcher can, with relative ease, integrate his/her contribution into overall
unmanned systems. This document is a guide to DRDC scientists who use the Miro toolkit
to develop algorithms for autonomous systems.

Significance of Results: DRDC used Miro on the Raptor unmanned ground vehicle to
successfully demonstrate autonomous capabilities. The adaptation of Miro and the
implementation of autonomous capabilities developed under the ALS project can be
difficult for new users. This document aids them in using DRDC’s Miro implementation
by outlining installation procedures and providing examples for understanding and
developing Miro based software. It also dissects existing code examples to provide a deeper
understanding of the software involved. Using this document, a user should be able to
quickly contribute to Miro based autonomy projects within AISS.

Future Work: Within the Miro framework, DRDC scientists have already developed a
number of useful algorithms, which interact in specific ways, to create intelligent robotic
behaviours. Although this manual describes, in detail, Miro’s configuration and usage, it
does not address issues associated with implementing autonomous capabilities. The ALS
Project, with its development of the Raptor unmanned ground vehicle, used the Miro
framework as a basis for implementing autonomy. A companion guide, describing the
Raptor implementation, is required by researchers wishing to develop autonomous
capabilities.

DRDC Suffield TM 2006-115 iii

Sommaire

AISS Miro Manual

J. Giesbrecht, J. Collier, G. Broten, S. Verret, S. Monckton; DRDC Suffield TM 2006-115;
R & D pour la défense Canada – Suffield; décembre 2006.

Contexte: Les projets Systèmes terrestres autonomes (STA) et Cohort entrepris par la
Section des systèmes intelligents autonomes (SSIA) à R & D pour la défense – Suffield
effectuent la recherche et la mise au point des véhicules autonomes sans équipage. Une
architecture logicielle, permettant aux chercheurs de mettre au point, d’implémenter et de
tester cette recherche, est requise pour que la recherche progresse. Une telle architecture
procure un cadre conceptuel de logiciels commun qui permet aux chercheurs de la défense
de pouvoir aisément collaborer. Cette collaboration est surtout importante pour les
opérations complexes telles que les systèmes autonomes. Après avoir effectué une étude
approfondie des trousses à outils de logiciels robotiques existants, le cadre conceptuel
« Miro » a été choisi comme base sur laquelle construire Architecture pour l’autonomie de
RDDC.

Résultats principaux: Le cadre conceptuel Miro permet aux programmes logiciels
distribués sur le réseau de communiquer de manière transparente les uns avec les autres. Il
contient beaucoup d’outils puissants permettant de combiner des composantes des logiciels
avec des algorithmes pour les applications de systèmes robotiques autonomes. Miro
contient aussi des logiciels utilitaires, généralement requis pour la mise au point de systèmes
de robots, tels que l’enregistrement chronologique et la lecture des données d’un véhicule.
Un chercheur individuel peut utiliser le cadre conceptuel Miro pour intégrer, avec une
certaine aisance, sa contribution à un ensemble de systèmes sans équipage. Ce document est
un guide destiné aux scientifiques de RDDC qui utilisent la trousse à outils Miro pour
mettre au point les algorithmes des systèmes autonomes.

Portée des résultats: RDDC a utilisé Miro sur le véhicule terrestre sans équipage Raptor
pour démontrer avec succès ses capacités d’autonomie. L’adaptation de Miro et
l’implémentation de ses capacités autonomes mise au point par le projet STA peut être
difficile pour les nouveaux utilisateurs. Ce document les aide à utiliser l’implémentation
Miro de RDDC en soulignant les procédures d’installation et en procurant des exemples
pour comprendre et développer des logiciels basés sur Miro. Il dissèque aussi des exemples
de codes existants pour procurer une meilleure compréhension du logiciel utilisé. Un
utilisateur devrait être capable de contribuer rapidement aux projets d’autonomie basés sur
Miro, au sein de la SSIA, en utilisant ce document.

Travaux futurs: Les chercheurs de RDDC ont déjà mis au point, dans le cadre conceptuel
Miro, un certain nombre d’algorithmes utiles qui interagissent de manière spécifique pour
créer des comportements robotiques intelligents. Bien que ce manuel décrive en détail les
configurations et les usages de Miro, il n’aborde pas les problèmes reliés à l’implémentation
des capacités autonomes. Le projet STA a utilisé le cadre conceptuel Miro, durant la mise au
point du véhicule terrestre sans équipage, comme élément de base pour implémenter
l’autonomie. Un guide complémentaire, décrivant l’implémentation du Raptor, est
nécessaire pour les chercheurs souhaitant développer des capacités autonomes.

iv DRDC Suffield TM 2006-115

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Table of contents . v

List of figures . viii

1 Introduction . 1

1.1 Before Getting Started . 2

1.2 Getting Started . 2

1.3 Background . 3

1.3.1 What does Miro do? . 3

1.3.2 What Else Do I Need To Know? 5

2 Install Instructions . 5

2.1 Pre Installations . 5

2.1.1 .miroProfile . 5

2.2 QT Installation . 6

2.3 ACE/TAO Installation . 7

2.3.1 ACE Installation . 7

2.3.2 TAO Installation . 8

2.4 Pre-Miro Installation . 8

2.4.1 Boost . 8

2.4.2 GSL . 9

2.4.3 ATLAS . 9

2.4.4 LAPACK and LAPACK++ . 10

DRDC Suffield TM 2006-115 v

2.4.5 IEEE1394 Video Support . 11

2.4.6 OpenCV . 11

2.5 ULM Miro Installation . 11

2.6 DRDC Miro Installation . 12

3 Basic Concepts . 13

3.1 IDLs (Interface Definition Language) . 13

3.2 Naming Service . 13

3.3 Polled Mode Data Transfer . 14

3.4 Publish/Subscribe Event Driven Data Transfer 14

3.5 drdcMiro Directory Structure . 15

4 Miro Utilities . 15

4.1 LogPlayer/LogNotify . 15

4.2 nslist Naming Server Viewer . 16

4.3 Debug and Logging Services . 16

5 Miro Example Code . 17

5.1 Client Design Pattern . 17

5.2 Publish-Subscribe Design Pattern Example 19

6 Types of Files and Objects in Miro Code . 19

6.1 Implementing the Publish-Subscribe Design Pattern 20

6.2 Implementing the Publish Server and Reactor 21

6.3 Software Objects and Classes . 23

6.3.1 Classes . 23

6.3.2 Objects . 23

6.3.3 Objects For Hardware Interface Modules 24

vi DRDC Suffield TM 2006-115

7 Discussion . 25

7.1 ExampleA - Implementation of a Server Module 25

7.2 ExampleB - Polling Client Module . 26

7.3 ExampleC - Publisher of Events . 27

7.4 ExampleD - Subscriber to Events . 28

7.5 Hardware Interfacing using the Publish Server and Reactor Design Pattern 30

7.6 Timed Event Publication . 32

8 Adding a New Service to the Automake Structure 33

9 OMG Interface Definition Language . 37

9.1 IDL CORBA Sequences . 40

9.1.1 Declaration of Sequences in an IDL 40

9.1.2 Using CORBA Sequences within Modules 41

10 Parameter Files . 42

10.1 Compile-Time Parameter Files . 42

10.1.1 Helpers . 44

10.2 Parsing Run-Time Parameter Files . 44

10.3 Run-Time Parameter Files . 45

10.4 Nested Data Structures . 46

11 Using Qt and Miro . 47

11.1 QtDesigner with Miro . 48

11.2 Contributing QtDesigner Widgets to the Widgets Library 49

References . 50

Annex A: CVS Protocol . 51

DRDC Suffield TM 2006-115 vii

List of figures

Figure 1: The CORBA, ACE, TAO and MIRO relationship 4

Figure 2: Module interaction for example code . 17

Figure 3: A Typical Miro service . 20

Figure 4: A Consumer Object . 20

Figure 5: Miro Device Driver . 21

Figure 6: Client Service . 22

Figure 7: Event Handler Service . 22

Figure 8: Message Service . 22

Figure 9: ExampleA Structure . 25

Figure 10: ExampleB Structure . 26

Figure 11: ExampleC Structure . 27

Figure 12: ExampleD Structure . 29

Figure 13: Device Driver Structure . 30

Figure 14: The IDL Compile . 37

viii DRDC Suffield TM 2006-115

1 Introduction

Miro is MIddleware for RObots and is a distributed component based framework for mobile
robot control based on CORBA. Put in simple terms, Miro is a framework that simplifies
the process of building a robot by providing capabilities that are commonly used by robot
systems.

The ALS program and the Cohort ARP1 researches and develops autonomous unmanned
vehicles. In order for this research to occur and progress, an architecture is required that
allows the researcher to implement and test their research or algorithms. The AISS section
thoroughly reviewed the requirements for autonomous intelligent systems in a Technical
Report [1] which concluded:

“To effectively distribute intelligence modules within and between UVs a layered
modular hardware design and portable, maintainable coding practice require an
architecture that, at once, inherently supports and encourages distributed com-
puting, and frees investigators to focus on the development of intelligent single
and multi-vehicle control systems. An architecture founded on these elements
defines, at a high level, the links between various software components that cre-
ate an operational vehicle. Ideally, architectures should seamlessly transition
between real vehicle control, system diagnosis through the replay of gathered
data and the control of a vehicle in a simulated world. Ideally, the investigator
is then free to develop intelligence algorithms without vehicle implementation
distractions. When satisfied with the simulated performance, the investigator
can safely execute algorithms on a physical vehicle. Conversely, with the vehicle
operating, data from the environment can be gathered, archived, and replayed
within a simulated environment to investigate, debug and optimize the perfor-
mance of an algorithm.”

This technical report investigated architectures for autonomy that would meet the current
and future requirements of autonomous intelligent systems and concluded:

“. . . the Miro framework and ACE/TAO foundations exemplify highly mod-
ular, extensible, and reusable components that offer direct research benefits.
Extensible, scalable, distributed, and modular components will ease installation
across DRDC systems and, significantly, will simplify cooperation with other re-
search institutions. Components achieve these goals by using defined interfaces
to share information between processes. These critical interfaces permit sharing
of information with other components, inherently allowing information distribu-
tion. The distribution details remain hidden from the researcher, allowing full
research effort to focus on increasing vehicle capabilities.”

Through the use of Miro an individual researcher can, with relative ease, integrate his/her
contribution to the overall unmanned system (UxV) whether that contribution be sensing,

1And future autonomous intelligent systems Advanced Research Programs (ARPs).

DRDC Suffield TM 2006-115 1

mapping, navigation, localization, arbitration, mobility, etc. In summary, all researchers of
the Autonomous Intelligent Systems Section (AISS) must be familiar with Miro if they want
to integrate their research into the UxVs developed under the ALS and Cohort programs.

It is also recommended that Miro users read the paper “Software Engineering for Ex-
perimental Robotics”[2] to get a better idea of the design patterns used in DRDC Miro
programs.

1.1 Before Getting Started

This document is a rough guide for users to begin programming within the Miro framework.
Before starting, many different installations need to completed, including ACE, TAO and
Miro. The ACE/TAO/Miro software can be very confusing and complicated at first glance,
but to quote Douglas Adams: “DON’T PANIC.” It actually isn’t that tough.

In addition to this guide, it is also recommended that the user read the ULM Miro man-
ual [3].

The first section of this document will take the reader through the rigorous process of
installing ACE, TAO, Miro and all the other associated libraries required to get Miro to
compile. The user must also understand that two branches of Miro are used at DRDC,
the main branch from the open source community (labelled ulmMiro) and DRDC’s branch
(labelled drdcMiro).

1.2 Getting Started

This guide refers to Miro modules, but they may also be called services, processes or pro-
grams. All of these labels refer to a stand alone computer program within Miro which does
a specific task such as a GPS or SICK laser driver, or a localization, mapping, or obstacle
avoidance algorithm.

There are a series of files and classes associated with each Miro service. With experience,
the user will begin to recognize key objects and functions. In addition, most of the Miro
modules follow standard design patterns and the best way to understand them is by looking
at code examples. It is expected that the user will refer back and forth between this guide
and Miro code to gain a thorough understanding of the software.

A key first step in creating a new Miro module is defining what the module will implement.
Almost every module will be based around sending or receiving data which is defined in a
pre-established interface (IDL) file. Before creating a module one should follow these steps:

1. Answer the question: Which interfaces/services will I need to talk to (send or receive
data from)?

2. Answer the questions: What do I want to do with this interface? Do I want to send
or receive data? Do I want to be able to poll for data and call functions from other

2 DRDC Suffield TM 2006-115

services? Alternatively, do I want to have the other services notify me when data is
ready?

3. Find a pre-existing example to base your code on, and adapt it to your needs. Find
code that uses either the same interface (IDL), or handles data in a similar way (event
driven vs. polled), or both. All Miro modules follow established design patterns, which
simplifies reuse.

In order to facilitate the learning process, there are Miro examples in the directory called,
drdcMiro/examples. If you wish to see something running, you can skip to Section 5 of this
document to run the examples.

Before doing anything with Miro, you will need to have ACE and TAO installed, and the
latest CVS version of the DRDC branch of Miro. In this manual, the install directory is
referred to as drdcMiro.

Also note that this manual is available at drdcMiro/doc/als miro manual.

1.3 Background

This section will introduce Miro and its components.

1.3.1 What does Miro do?

Miro is an component based framework that achieves network transparency. These
terms are defined below:

• Component Based Szyperski defines components as “binary units of independent
production, acquisition, and deployment that interact to form a functioning system”
[4]. Thus a component is an independent entity that is capable of executing without
requiring the services of a complete system and is often considered to be a separate
process that runs under its own workspace. Through the use of components a system
can be decoupled into its constituent elements. This decoupling results in portable
and modular software that exhibits plug-and-play characteristics.

• Frameworks are defined as a set of classes that embody an abstract design for
solutions to a number of related problems. All code is implemented using standard
design patterns allowing the reuse of preexisting code, through well defined interfaces
(using the IDL language).

• Network Transparency is defined as the ability to send and receive data between
computer processes which may or may not reside on the same machine, without having
any knowledge of the underlying network structure.

Miro is a framework built upon the capabilities defined by the CORBA (Common Object
Request Broker Architecture) standards. Miro uses the TAO (The ACE ORB) implemen-
tation of CORBA, and TAO is based upon ACE (Adaptive Communications Environment)
middleware toolkit.

DRDC Suffield TM 2006-115 3

Miro embodies all of the toolsets, shown in Figure 1, into a set of object oriented design
patterns. Knowledge of the design patterns will allow the user to take advantage of these
toolsets without having to know specific implementation details.

CORBA

ACE

TAO

MIRO

Figure 1: The CORBA, ACE, TAO and MIRO relationship

CORBA

• Provides distributed multi-threaded, multi-process programming.

• Automates many common network programming tasks.

• Provides services and infrastructure for passing objects over a network.

• Uses the Interface Definition Language (IDL) to define interfaces between programs.

ACE

• Library of Inter-process communication and system level calls.

• Allows platform independent programming.

• Provides the ACE Reactor Framework, which provides a flexible event handling mech-
anism (for use with hardware using TCP/IP and RS-232 protocols).

TAO

• A real-time CORBA implementation, based upon ACE.

• Designed for high performance and real-time communication.

• Provides a Naming Service for looking up and connecting to other modules.

4 DRDC Suffield TM 2006-115

1.3.2 What Else Do I Need To Know?

Miro is implemented using the C++ programming language and thus knowledge of object
oriented programming is required. CORBA supports other language mapping such as C
and Java; hence such languages could be used if required, but this route is not recommended
as Miro uses only C++ at this time.

At the present time Miro runs only under Linux, thus a basic knowledge of using Linux/Unix
is required. The Miro developer will require knowledge of the X Window system and the
Linux/Unix command line. Since Linux is the operating system of choice, Miro also uses the
standard Linux development tools such as: autoconf, the g++ compiler and the gdb/ddd
debugger. Miro simplifies the use of these tools.

All Miro files are stored in the AISS CVS repository, which allows for the simultaneous
development of software by multiple users. For those unfamiliar with CVS, there are several
books available, including [5].

2 Install Instructions

It is assumed that the user is using a Redhat/Fedora based system with the system update
program yum installed. If you are using another linux system you will have to install the
following packages according to your particular distribution of linux.

2.1 Pre Installations

To install ACE/TAO the following lines are required in the .bashrc file in your $HOME
directory. If you’re using a different shell you may have to add it to a different file.

In your home directory edit the .bashrc file and add the following two lines:

source $HOME/.miroProfile

Then create the .miroProfile in your home directory as per the instructions in Section 2.1.1.
Finally, source the .bashrc file by typing:

source ~/.bashrc

2.1.1 .miroProfile

The .miroProfile file should contain the following text:

User specific variables for Miro

DRDC Suffield TM 2006-115 5

Define the paths where ACE/TAO are located

export ACE_ROOT=/usr/local/ACE

export TAO_ROOT=$ACE_ROOT/TAO

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACE_ROOT/ace:$ACE_ROOT/lib

Miro Naming Service Variables, which includes multi-threading

export IP="YOUR_IP_ADDRESS"

export PORT="2809"

export NS="-m 0 -ORBEndpoint iiop://$IP:$PORT"

export NSC="-ORBInitRef NameService=iioploc://$IP:$PORT/NameService"

export MT="-ORBSvcCONF drdc.conf"

Define the ATLAS variable

export ATLAS_ROOT=/usr/local/ATLAS

export ATLASARCH=Linux_P4SSE2_2

export NameServiceIOR=corbaloc:iiop:$IP:$PORT/NameService

#Define the path where MIRO is located

export MIRO_ROOT=PATH_TO_ULM_MIRO/ulmMiro

Please note that YOUR IP ADDRESS should be replaced with your computer’s IP address
and PATH TO ULM MIRO should be replaced with the full path name to your ulmMiro
installation. Additionally, if you have installed any of the packages in different places then
you will have to change .miroProfile accordingly.

2.2 QT Installation

In order to compile ACE/TAO QT must be installed. Many distributions of linux come
with QT. Below are QT installation instructions using the yum package manager:

yum install qt

yum install qt-devel

yum install kdelibs

yum install kdelibs-devel

For non yum users, the process can vary depending on the package downloaded. Please
follow the instructions that come with the package you downloaded.

An additional OpenGL 3d package, libQGLViewer is used by some drdcMiro Qt based
utilities and can be installed if desired. Though nonessential, these utilities permit viewing
of vehicle frames and data sets in 3D:

1. Ensure Qt is properly installed.

6 DRDC Suffield TM 2006-115

2. Download libQGLViewer from http://artis.imag.fr/ Gilles.Debunne/QGLViewer/.

3. Follow the install instructions.

2.3 ACE/TAO Installation

In this document, it is assumed that the reader is using Fedora Core 3, GCC version 3.4
and ACE/TAO versions 5.4.8 and 1.4.8 respectively. The instructions follow below:

2.3.1 ACE Installation

1. Open a terminal and login as root.

2. Make the following two directories:

mkdir /usr/local/ACEDIR

mkdir /usr/local/ACE

The first directory will hold the ACE/TAO installation tarball while the second di-
rectory will contain the ACE/TAO installation.

3. From your command line, export the three environment variables below:

export MY_ACEDIR=/usr/local/ACEDIR

export ACE_ROOT=/usr/local/ACE

export LD_LIBRARY_PATH=$ACE_ROOT/ace:$ACE_ROOT/lib:$LD_LIBRARY_PATH

4. Download ACE/TAO 5.4.8 from http://deuce.doc.wustl.edu/Download.html in to
“/usr/local/ACEDIR”.

5. Download the install script from http://www.cs.wustl.edu/ schmidt/ACE-install.sh
into “/usr/local/ACEDIR/”.

6. Change directories into “/usr/local/ACEDIR/”.

cd /usr/local/ACEDIR

7. Change the permissions

chmod 755 ACE-install.sh

8. Run the install script:

./ACE-install.sh

9. You’ll then be asked several questions, for which the answers are provided after each
question:

(a) Question

ACE source in

ACE will be installed in /usr/local/ACE

OK to continue? [Y/N] : \c

DRDC Suffield TM 2006-115 7

Answer
y

(b) Question
Save a copy of existing ACE installation? [Y/N] : \c

Answer
n

(c) Question
...

config-win32-visualage.h

config-WinCE.h

Type the filename for your compiler: \c

Answer
config-linux.h

(d) Question
...

platform_win32_icc.GNU

platform_win32_interix.GNU

Type the filename for your compiler: \c

Answer
platform_linux.GNU

(e) Question
Make ACE now with default setup? [Y/N] : \c

Answer
y

2.3.2 TAO Installation

1. Set and export a TAO ROOT environment variable

export TAO_ROOT=$ACE_ROOT/TAO

2. Make the code in the $TAO ROOT directory

cd /usr/local/ACE/TAO

make

2.4 Pre-Miro Installation
2.4.1 Boost

The use of high-quality libraries such as Boost speeds initial development, results in fewer
bugs, maximizes reuse, and cuts long-term maintenance costs. In addition, Boost libraries
are becoming de facto standards which many programmers are already familiar with.

Install Boost using yum:

su -

yum install boost boost-devel

8 DRDC Suffield TM 2006-115

2.4.2 GSL

The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers.
It is free software under the GNU General Public License. The library provides a wide
range of mathematical routines such as random number generators, special functions and
least-squares fitting. There are over 1000 functions in total with an extensive test suite.

Unlike the licenses of proprietary numerical libraries the license of GSL does not restrict
scientific cooperation. It allows you to share your programs freely with others.

GSL is a simple install if you have YUM:

yum install gsl

yum install gsl-devel

2.4.3 ATLAS

ATLAS is an optimized version of BLAS and LAPACK written in C that can perform very
fast matrix calculations. As it probes the CPU to optimize its code, it makes different file
folders to contain the name of the operating, processor type, and number of processors2.
For example on the Raptor UGV computer ATLAS code compiles under Linux P4SSE2 8
3.

1. Download the latest ATLAS Package from
https://sourceforge.net/project/showfiles.php?group id=23725

2. Open a terminal, login as root, move the package to /usr/local/ and untar it, the
example below assumes you downloaded version 3.6.0.

su -

cd /usr/local

cp /<path>/atlas3.6.0.tar.gz /usr/local/

tar -zxvf atlas3.6.0.tar.gz

3. Change directories to /usr/local/ATLAS, and build the code

cd /usr/local/ATLAS

make

4. At this point you will be asked a lot of questions. You should be able to just hit
enter for all of them. EXCEPT IF YOU ARE ASKED THE QUESTION
BELOW, you’ll want to make sure to choose the appropriate processor type with
respect to your machine for the following question:

2It can hyper thread matrix operations which will boost your code’s performance.
3For 8 processor usage since the the Raptor computer has 4 hyperthreaded cores

DRDC Suffield TM 2006-115 9

Probing for architecture:

Enter your machine type:

1. Other/UNKNOWN

2.AMD Athlon

3. 32 bit AMD Hammer

4. 64 bit AMD Hammer

5. Pentium PRO

6. Pentium II

7. Pentium III

8. Pentium 4

Enter machine number [8]:

5. You will also be asked:

Enter Architecture name (ARCH) [Linux_P4SSE2_2]:

For which the answer is: Linux P4SSE2 2 or whatever you put in your “.miroProfile”
file.

6. After this is complete, you need to compile and install it

make install arch=Linux_P4SSE2_2

2.4.4 LAPACK and LAPACK++

LAPACK provides routines for solving systems of simultaneous linear equations, least-
squares solutions of linear systems of equations, eigenvalue problems, and singular value
problems. The associated matrix factorizations4 are also provided, as are related compu-
tations such as reordering of the Schur factorizations and estimating condition numbers.
Dense and banded matrices are handled, but not general sparse matrices. In all areas,
similar functionality is provided for real and complex matrices, in both single and double
precision. LAPACK++ is a C++ implementation of LAPACK.

1. Login to a terminal as root and install the g77 Fortran compiler and LAPACK:

su -

yum install gcc-g77

yum install lapack

2. Download the latest LAPACK++ package from
http://sourceforge.net/project/showfiles.php?group id=99696

3. Then as root install the package, the example below assumes you’re using version
2.3.0:

su

tar -xvzf lapackpp-2.3.0.tar.gz

cd lapackpp-2.3.0

./configure --with-atlas-libs=/usr/local/ATLAS/lib/Linux_P4SSE2_2/

make

make install
4LU, Cholesky, QR, SVD, Schur, generalized Schur

10 DRDC Suffield TM 2006-115

2.4.5 IEEE1394 Video Support

To install IEEE1394 ensure that the DAG yum repository is enabled and do the following:

su -

yum install libdc1394 libdc1394-devel libraw1394 libraw1394-devel

2.4.6 OpenCV

OpenCV (Open Source Computer Vision) is a library of programming functions mainly
aimed at real time computer vision.

Example applications of the OpenCV library are Human-Computer Interaction (HCI); Ob-
ject Identification, Segmentation and Recognition; Face Recognition; Gesture Recognition;
Motion Tracking, Ego Motion, Motion Understanding; Structure From Motion (SFM); and
Mobile Robotics.

Download ffmpeg version 0.4.9 and opencv version 0.9.7 from
http://prdownloads.sourceforge.net/opencvlibrary/ and follow the instructions below:

yum install ffmpeg ffmpeg-devel

yum install opencv opencv-devel opencv-python

2.5 ULM Miro Installation

1. Make sure .miroProfile has been sourced as per Section 2.1.1.

2. Checkout the Miro code. In your projects directory type:

cvs -d :ext:<username>@mao:/usr/local/cvsroot co -kk ulmMiro

where <username> is your login name, e.g. sverret

3. Edit .miroProfile and change the following line to reflect where your ulmMiro code is
stored:

export MIRO_ROOT=/home/alsuser/Projects/ulmMiro

4. Re-source .miroProfile:

source ~/.miroProfile

5. Use a terminal to browse to the directory that you downloaded Miro to

cd ~/Projects/ulmMiro

6. Bootstrap the configuration process by typing:

./bootstrap

7. After Bootstrap runs you should see the word “autoconf” at the end of the script. If
not, run autoconf

DRDC Suffield TM 2006-115 11

autoconf

8. Configure Miro using the following command.

./configure

make

9. To compile optional Player [6] support use the –enable-Player configure option.

2.6 DRDC Miro Installation

1. Ensure that .miroProfile points the shell variable $MIRO ROOT to the right location.

Edit .miroProfile and change the following line to reflect where your ulmMiro code is
stored:

export MIRO_ROOT=/home/alsuser/Projects/ulmMiro

and add a line identifying where you will install drdcMiro. This isn’t necessary for
the configure or make steps, but some drdcMiro executables look for this environment
variable:

export DRDC_ROOT=/home/myDirectory/Projects/drdcMiro

2. Re-source .miroProfile:

source ~/.miroProfile

3. Now you are ready to install the drdcMiro code, which uses the ulmMiro code as a
library.

4. Checkout the Miro code. In your projects directory type:

cvs -d :ext:<username>@mao:/usr/local/cvsroot co -kk drdcMiro

where <username> is your login name, e.g. sverret

5. Use a terminal to browse to the directory that you downloaded Miro to

cd ~/Projects/drdcMiro

6. Bootstrap the configuration process by typing:

./bootstrap

7. After ./bootstrap runs you should see the word ”autoconf” at the end of the script.
If not, run autoconf:

autoconf

8. Configure Miro using the following command:

./configure

make

9. To compile optional Digiclops support use the –enable-Digiclops configure option.

12 DRDC Suffield TM 2006-115

3 Basic Concepts
3.1 IDLs (Interface Definition Language)

IDL is the computer language used to define the interface of a CORBA object. All com-
munication within Miro has its structure defined in an IDL file. These files are located in
the drdcMiro/idl directory. There are a number of different interfaces already defined and
the number will continue to grow and change over time.

The IDL Language:

• Allows the developing of complex CORBA interfaces.

• Uses a C++ like syntax and is easy to use and understand.

• Is compiled into C++ using the TAO IDL compiler.

• Specifies data structures and functions which represent the communication between
processes in the Miro system.

• Describes the interface only, not the implementation. The implementation is done by
overloading the methods created in the IDL.

CORBA is not language specific, thus IDL is a language of its own, and is compiled by a
special IDL compiler into a particular language (C++ in DRDC’s case). IDL is a declarative
language. In other words, IDL code contains no expressions or evaluations. In this way,
IDL can best be thought of as a non language specific class header file. In fact, most C++
programmers will find the syntax of IDL familiar. In a typical class header file there is a
declaration of a class and all of its data and method members. The syntactical expressions
which perform the function of the class are generally reserved for the associated C++ file.
Under Miro, the IDL file is analgous to the .h header file, and the actual module code is
analgous to the .cpp file. The module code is generally referred to as an Implementation of
the IDL.

More on creating and using IDLs can be found in Section 9 of this manual.

3.2 Naming Service

The Naming Service is the central point where all processes connect to find references to
other processes or events in Miro. Every Miro process will need to connect to a Naming
Service.

The Naming Service is run from the /usr/local/ACE/TAO/orbsvcs/Naming Service direc-
tory by typing one of the following:

1. ./Naming Service -m 1

This will multicast the Naming Service allowing any Miro module on the same subnet
to find it automatically when run. Note that if there are two network services (i.e eth0

DRDC Suffield TM 2006-115 13

and eth1) and you attempt to connect this way, it will take a long time. Similarly, if
interface eth0 is active, but not plugged into the network, it will take services a long
time to find the Naming Service.

2. ./Naming Service -m 0 -ORBEndpoint iiop://127.0.0.1:2809

This specifies a specific place for the Naming Service to be found, in this case on
the loopback interface at port 2809. Miro processes attempting to use this Naming
Service will need to be run with the following argument:

./exampleservice -ORBInitRef NameService=iioploc://127.0.0.1:2809/NameService

Chapter 3 of the Miro Manual describes the Naming Service in more detail.

3.3 Polled Mode Data Transfer

Polling is the most basic way of accessing data located within another Miro service. After
a reference to the desired CORBA object in the Naming Service is found, modules make
function calls and return values from them as if they were running in the same process.

The object being polled, must implement an interface of an IDL type. The polling service
makes a function call as defined in the IDL and the data structure is returned to the calling
process. Because the processes involved may not be running on the same machine, the IDL
language doesn not permit pointers to be used as arguments or return values for any of
these functions.

The implementation of the IDL interface is stored in the modules drdcMiro/src/ directory,
or in the shared drdcMiro/src/miro directory. The former directory is common when the
interface is specific to one service while the latter directory is used to store generic imple-
mentation for potential reuse by multiple modules. For example the implementation of the
Raptor IDL which contains function calls specific to the Raptor UGV hardware is stored
in drdcMiro/src/raptorCommand, while the Range3dSensor IDL implementation is stored
in drdcMiro/src/miro, because many potential sensor services could conceivably produce
events of this type.

This type of data interaction is useful for data transfers that occur infrequently, when data
is to be polled from a service, or certain attributes are to be set in a service.

Chapter 4 of the Miro Manual further describes Polled Mode Data transfer.

3.4 Publish/Subscribe Event Driven Data Transfer

Miro also provides event driven data transfer using the CORBA Notification Service. In this
context a service generates an event and publishes data to modules which have subscribed to
the event. This supplier registers its event with the Event Channel in the Naming Service
and the Event Channel is usually named EventChannel. The supplier gives its events a
descriptive name within the event channel, such as Imu, Gps, or Laser. Then, each module

14 DRDC Suffield TM 2006-115

which wishes to subscribe to this data adds a subscription to the EventChannel. The
consuming module can now receive these events using an EventHandler (callback function)
which deals with these events when they occur.

The data structures for event data are defined in an IDL file, but are not actually part of
the interface itself. This type of data transfer is good for asynchronous events, allowing a
module to respond quickly to availiable data.

Chapter 4 of the Miro Manual covers this topic in more detail.

3.5 drdcMiro Directory Structure

There are a number of sub-directories within drdcMiro:

• Code is run from drdcMiro/bin.

• Miro module code is located in drdcMiro/src.

• IDLs are located in the drdcMiro/idl directory along with their compiled header files.

• Examples of code usage are found in the drdcMiro/examples directory.

• Generic IDL implementations are located in the drdcMiro/src/miro directory5, while
others are stored in the src directory of the service which implements them6 as was
discussed in Section 3.3.

• Utilities for displaying and debugging data are found in drdcMiro/utils.

4 Miro Utilities
4.1 LogPlayer/LogNotify

The Miro LogPlayer and LogNotify services provide a powerful method for testing and
debugging Miro code. The LogNotify program records user specified events events and
event data from an event channel to a log file.

The LogPlayer provides a GUI for replaying these logged data files. From the Miro mod-
ule point of view there is no difference between events created using the LogPlayer and
events from actual real-time services and hardware. This means that situations can be
recreated/tested/debugged without the need to have the actual hardware present.

As an example, the file GPS Run Mar 21 05.log, located in the drdcMiro/utils/logPlayer
directory, contains data and events logged from the GpsSokkia driver using the Raptor
vehicle. Playing this file using the LogPlayer re-creates the Gps events, logged under the
EventChannel, in time sequenced order. A consumer of Gps events can not distinguish

5Examples of IDL implementations are ImuImpl and GpsImpl
6The PlayerBasePlayerMotionImpl follows this format

DRDC Suffield TM 2006-115 15

between events produced by the LogPlayer and true hardware Gps events. The LogPlayer
is limited by its inability to directly recreate data transactions where a Client polls for data.

These programs are found in the ulmMiro/utils/logNotify and ulmMiro/utils/logPlayer
directories.

This topic is covered in more detail in the Chapter 11 of the Miro Manual.

4.2 nslist Naming Server Viewer

The nslist utility displays the events and objects registered in the Naming Service. It is
located in the /usr/local/ACE/TAO/utils/nslist directory.

For a multicast naming service type: ./nslist

Otherwise, point nslist at the correct naming service: ./nslist -ORBInitRef NameSer-
vice=iioploc://127.0.0.1:2809/NameService

4.3 Debug and Logging Services

Miro has built in facilities to assist in the debugging and logging of software. According to
Chapter 10 of the Miro Manual:

“The logging of debug, information and error messages can help a great deal
in the recovery from failure situations. . . . Unfortunately the sheer mass of
console output from the different modules can quickly become complex. So
Miro comes with a set of logging facilities that cover different levels of the
system functionality.”

The following line shows an example of a debugging statement:

MIRO DBG OSTR(MIRO, LL DEBUG, "Map Size:")

To enable this debug printout, command line options are appended to the involcation of
the program as follows:

./ProgramName -MLL 7 -MLF MIRO

or

./ProgramName -MiroLogLevel 7 -MiroLogFilter MIRO

For example code that illustrates the capabilities of the Miro logging facilities look at
the ulmMiro/tests/log directory which shows the usage of all the Miro debug levels and
categories. See the Miro Manual for a complete description of the debugging and logging
capabilities of Miro.

16 DRDC Suffield TM 2006-115

5 Miro Example Code

All Miro modules follow general design patterns where the full details regarding these design
patterns can be found in [2]. For example, hardware, device driver modules use the Publish-
Server and Reactor design pattern. Similarly, modules which subscribe to one type of event
and create another type of event, follow the Publish-Subscribe design pattern. Four example
services, as shown in Figure 2, have been created in the drdcMiro/examples directory which
illustrate the use of design patterns in Miro services. All of the example files require the
Example interface that is defined in drdcMiro/idl/Example.idl.

1. ExampleA is a server than can respond to polling requests.

2. ExampleB is a client that polls data from the ExampleA server.

3. ExampleC creates the ExampleEventChannel and publishes events of type Exam-
pleEvent on this channel.

4. ExampleD subscribes to events of type ExampleEvent on the ExampleEventChannel.

Naming Service

A registers with
naming service

B finds A using
naming service

C registers events with
naming service

D subscribes to A’s events using
the naming service

exampleA

exampleC

exampleB

exampleD

A returns data to B

C pushes events to D

B makes function calls to A

Figure 2: Module interaction for example code

The following sections describe these examples in more detail.

5.1 Client Design Pattern

The ExampleA and ExampleB modules illustrates the Client design pattern where a Miro
client polls data from a Miro server. The ExampleA module, implemented under the
Publish-Subscribe design pattern, acts as a server that implements the polled mode ”Ex-
ample” interface functions defined by the Example.idl. ExampleB, implemented under the
Client design pattern, is a client that obtains an object reference to ExampleA and calling
the polled mode method to retreive ExampleA data.

In order to use this example, do the following:

DRDC Suffield TM 2006-115 17

$cd /usr/local/ACE/TAO/orbsvcs/Naming_Service

$./Naming_Service -m 0 -ORBEndpoint iiop://127.0.0.1:2809

In a second terminal:

$cd drdcMiro/examples/exampleA

$export NSC="-ORBInitRef NameService=iioploc://127.0.0.1:2809/NameService"

$./exampleA $NSC -MLL 9 -MLF MIRO

In a third terminal:

$cd drdcMiro/examples/exampleB

$export NSC="-ORBInitRef NameService=iioploc://127.0.0.1:2809/NameService"

$./exampleB $NSC -MLL 9 -MLF MIRO

One can now see, from the output, that ExampleA has registered itself with the Naming
Service. ExampleB has obtained a reference to ExampleA through the Naming Service,
called the function setData to initialize internal variables, and finally called getData to
continuously poll those values. As a client ExampleB will not be listed in the Naming
Service. ExampleB increments the data each time it is polled; resulting in the output
shown below:

The object ’ExampleA’ has been found in the naming service

Variables a and b have been set to: 0 and 10

Retrieved variables a and b are: 1 and 11

Variables a and b have been set to: 2 and 12

Retrieved variables a and b are: 3 and 13

Variables a and b have been set to: 4 and 14

Retrieved variables a and b are: 5 and 15

Variables a and b have been set to: 6 and 16

Notice how the IDL is used: ExampleA includes the file ExampleS.h7, and ExampleB
includes the file ExampleC.h 8.

Note: MLL = Miro Log Level and MLF = Miro Log Filter.

7Example interface Supplier
8Example interface Consumer

18 DRDC Suffield TM 2006-115

5.2 Publish-Subscribe Design Pattern Example

ExampleC, implemented under the Publish-Subscribe design pattern, acts as a server cre-
ating an event channel in the Naming Service called ExampleEventChannel and publishes
ExampleEvent data.

ExampleD, also implemented under the Publish-Subscribe design pattern, and uses an ACE
Reactor timer event to create events at a user defined interval.

In order to run this example, do the following. It will run exampleC to produce an event
every 1 second:

$cd /usr/local/ACE/TAO/orbsvcs/Naming_Service

$./Naming_Service -m 0 -ORBEndpoint iiop://127.0.0.1:2809

In a second terminal:

$cd drdcMiro/examples/exampleC

$./exampleC $NSC 1

At this point, exampleC show be indicating with its output that it is creating events. We
now would like to subscribe to them. In a third terminal:

$cd drdcMiro/examples/exampleD

$export NSC="-ORBInitRef NameService=iioploc://127.0.0.1:2809/NameService"

$./exampleD $NSC

You will now see exampleD receiving data.

With either of the above two examples, you can use nslist to see the objects in the Naming
Service by doing the following:

$ cd /usr/local/ACE/TAO/utils/nslist

$./nslist $NSC

6 Types of Files and Objects in Miro Code

Section 5 introduced simple Miro code examples, and now this code will be further dissected.
All Miro modules will have their own directory in the drdcMiro/src/ directory. Within a
modules directory, you will find a number of files, which create a number of classes. The
relations between these Miro files and classes is shown in Figure 3.

DRDC Suffield TM 2006-115 19

Consumer

Base

4)Implementation creates event
 on the event channel.

5) Implementation responds to
 polled mode requests.

Implementation

2)Consumer receives event
channel events

1)Base creates consumer
and implementation
objects

3)Consumer dispatches message
using the implementation

Figure 3: A Typical Miro service

6.1 Implementing the Publish-Subscribe Design Pattern

The basic files required to implement the Publish-Subscribe design pattern are the Base,
the Consumer and the Implementation. Each of these files are discussed, in detail, in the
following Sections.

Base

The Base is where the main() for the module is found. All the other files are included from
here and the Base is responsible for creation of Miro Servers and Clients, Consumers and
Event Handlers, ACE Reactors , along with all the other objects needed by the module.
Finally, the Base runs in a loop where it handles events until it is terminated. An example
of a Base file is drdcMiro/examples/exampleC/exampleCBase.cpp.

Consumer

The Consumer object, shown in Figure 4, processes all incoming messages. These may
be messages coming from an Event Channel9 or from an ACE Reactor10. It contains the
heart of the overall module, and is where the the module responds to incoming events. An
example of a Consumer file is drdcMiro/examples/exampleC/exampleCConsumer.cpp.

Figure 4: A Consumer Object

9If the Consumer is a StructuredPushConsumer object then event are delivered from other processes.
10If the consumer is a DevConsumer object then the events are delivered from a hardware device.

20 DRDC Suffield TM 2006-115

Implementation

Those modules which implement the CORBA interfaces to the IDL function definitions,
will use a file of this type. It may be stored in the module’s own directory, or found under
the drdcMiro/src/miro directory. Usually an implementation will provide methods for both
polling and asynchronously dispatching messages. The Implementation takes information
from the Consumer, integrates it into the IDL interface, and publishes it on the event chan-
nel. An example of an Implementation file is drdcMiro/examples/exampleC/ExampleNotifyImpl.cpp.

6.2 Implementing the Publish Server and Reactor

Miro modules that implement device drivers, as shown in Figure 5 , require other files
related to handling hardware devices. Details with respect to these device driver files are
given in the following sections.

Figure 5: Miro Device Driver

Client Service

This is the lowest level interface to the hardware. It handles the setup and maintenance of
the hardware communications11 and is also responsible for sending the outgoing messages
to the hardware. This class, shown in Figure 6, provides methods for sending/receiving
communications over the physical medium. It uses an ACE Reactor Task to retrieve events
on the specific file handle, and then sends these events to a callback routine within the Miro
module. An example of a Client file is drdcMiro/src/gpsSokkia/GpsSokkiaClient.cpp.

11Examples of communications software/hardware are TCP/IP and ethernet, serial ports and RS-232

DRDC Suffield TM 2006-115 21

Figure 6: Client Service

Event Handler Service

The Event Handler, shown in Figure 7, responds to the incoming hardware events for a given
file descriptor. Do not confuse these events with Miro EventChannel events, these are hard-
ware generated events. The Event Handler creates a Message object, and processes the data
stream into the Message format. The Event Handler remains responsive by performing very
little internal processing; instead it passes the processing load to the Consumer of the data.
An example of an Event Handler file is drdcMiro/src/gpsSokkia/GpsSokkiaEventHandler.cpp.

Figure 7: Event Handler Service

Message Service

This Message, shown in Figure shown in 8, stores incoming and outgoing hardware mes-
sages, until they can be handled by the Consumer. An example of a Message file is drd-
cMiro/src/gpsSokkia/GpsSokkiaMessage.cpp.

Figure 8: Message Service

.

22 DRDC Suffield TM 2006-115

6.3 Software Objects and Classes
6.3.1 Classes

Within the files mentioned above there are key classes and Miro concepts that the program-
mer needs to understand.

Miro::Server

The Server registers objects, events and event channels with the CORBA Naming Service12.
After all the objects for the module have been declared, set up, and the references in the
Naming Service found, the server.run() command is issued that puts the program in a loop;
thus enabling the module to handle and dispatch events as necessary.

Miro::Client

The Client resolves the name of different objects registered with the CORBA Naming
Service and if successful is able to poll data from a Server.

EventChannel var

The EventChannel var points to the event channel in the CORBA Naming Service that
is used for publish/subcribe services. The Server.resolvename() function, if successfully
resolved, will point EventChannel var to an existing event channel. When required the
EventChannelFactory.create channel() function is called to create a new event channel.
Usually only one event channel is required13; thus this function is only called once.

6.3.2 Objects
StructuredPushConsumer

This StructuredPushConsumer object responds to events from event channels, through
the callback function push structured event. This function is called every time one of the
subscribed events is received. It is passed a StructuredEvent that points to the event object
containing data.

EventChannel var notifyFactory

This object is used to create new event channels.

StructuredPushSupplier

The StructuredPushSupplier object pushes events and their data, at the CORBA level,
onto the event channel. It is passed to the to the Implementation object which will use the
StructuredPushSupplier to send the data.

12Remember, these are used by event driven services, as well as by services which implement an IDL
interface.

13The Miro logging facilities can only synchronize data from a single event channel.

DRDC Suffield TM 2006-115 23

Implementation Objects

These objects package the outgoing data and implement functions declared in the IDL file.
This includes remote methods, methods for polling data and in the case of event publishing,
the implementation.integrateData() function that pushes data to the event channel.

AsynchDispatcher

AsynchDispatcher connects the Implementation object with the event channel, and pub-
lishes the events.

6.3.3 Objects For Hardware Interface Modules
ReactorTask

The ReactorTask is an ACE reactor which alerts the system to incoming hardware data
by monitoring the hardware file descriptor. Upon the reception of data the ReactorTask
passes the received data to the Event Handler.

DevConnection

DevConnection inherits from Miro::TtyConnection for serial communications or from
Miro::SockConnection for TCP communications, and provides the setup for reading and
writing to hardware.

DevEventHandler

DevEventHandler is based upond the ACE Event Handler and provides a callback function
handle input that reads the data from the hardware file descriptor. It then packages the data
into the Message class to be processed by the Consumer. Finally, the dispatchMessage()
function is called to alert the DevConsumer that there is a message ready to be processed.

DevMessage

DevMessage contains a buffer to hold data, and provides accessor methods to retrieve it.

DevConsumer

The DevConsumer, which is triggered when the DevEventHandler calls dispatchMessage(),
processes the device specific data in DevMessage into an IDL compatible format using the
handleMessage() function . This consumer is not to be confused with a StructuredPush-
Consumer, which processes Miro events from an event channel.

24 DRDC Suffield TM 2006-115

7 Discussion

With a basic understanding of the example code and the various software classes, com-
ponents, and design patterns used to construct these examples, it is now possible to step
through the examples in more detail. Also discussed in this section is an example that
uses the Publish Server and Reactor design pattern to interface directly with a hardware
device14.

7.1 ExampleA - Implementation of a Server Module

Overview: ExampleA implements an IDL interface that allows other Miro modules to
remotely invoke functions for polling; where polling is the sending and receiving of data
between processes. The structure and form of the ExampleA implementation is shown in
Figure 9

Base

Server

Implementation

1)Base creates an
implementation
object and a server

2) Server registers with the
naming service

 polled mode requests.
3)Implementation responds to

Figure 9: ExampleA Structure

Examples of this type:

• drdcMiro/examples/exampleA

• drdcMiro/src/3dmg

• drdcMiro/src/GpsSokkia

Typical Files:

• Base

• Implemplementation

Key Objects:

• Server

14To be specific this example is a device driver for a RS-232 serial connection with a GPS device.

DRDC Suffield TM 2006-115 25

• Implementation Object

Key Functions:

• server.addToNameService() - Registers the new object reference in the Naming Service

Description: In the Base file, the main() program creates a Miro::Server object. The
server will be used to register objects with the Naming Service. It also creates an instance
of the Implementation object, which responds to function calls from other Miro services.

The code for the Implementation object is found in the Implementation file. This Imple-
mentation object inherits from POA Miro::Example, which means it will implement the
functions for the interface Example that have been declared in Example.idl.

7.2 ExampleB - Polling Client Module

Overview: ExampleB polls a Miro Server modules using the defined IDL methods to
retrieve/set data. The structure of this example is shown in Figure 10.

Base
1)Base creates a Client
object

2)Client queries the naming
service to find the desired object

3) Base calls function from
remote service

Client

Figure 10: ExampleB Structure

Examples of this type:

• drdcMiro/examples/exampleB

• drdcMiro/examples/3dmg/3dmgPoll.cpp

Typical Files:

• Base

Key Objects:

• Client

Key Functions:

26 DRDC Suffield TM 2006-115

• client.resolveName() - Retrieves an object reference in the Naming Service.

Description: ExampleB creates a Miro::Client and uses the CORBA Naming Service to
retrieve an object reference from the ExampleA server. This enables it to remotely execute
ExampleA functions that, typically, allow the sending and receiving data structures via the
structures defined in the IDL file.

7.3 ExampleC - Publisher of Events

Overview: ExampleC, derived from the Publish-Subscribe Server design pattern, asyn-
chronous publishes events on the event channel. Modules subscribed to these events will
automatically be notified every time an event is published. The structure of the Publish-
Subscribe Server is shown in Figure 11. The data types, passed as events on the event
channel, are define in the Example.idl file.

Base

StructuredPush
Consumer

EventChannel
Factory

3)When the consumer wants
to create an event, it calls the
integrateData() function from
the Implementation

2) The Consumer creates an
EventChannelFactory object
which then creates an event
channel for outgoing events

Consumer and Implementation
objects

1)The base creates the server

4)The implementation uses
the asynchDispatcher to put
data on the event channel

Implementation AsynchDispatcher

Figure 11: ExampleC Structure

Examples of this type:

• drdcMiro/examples/exampleC/

• drdcMiro/examples/notify/GenericNotify.cpp

• drdcMiro/src/3dmg/

• drdcMiro/src/GpsSokkia/

• drdcMiro/src/Laser/

Typical Files:

• Base

• Consumer

• Implementation

Key Objects:

• Server

DRDC Suffield TM 2006-115 27

• EventChannel var

• StructuedPushSupplier

• EventChannelFactory var

• Implementation Object

• AsynchDispatcher

Key Functions:

• EventChannelFactory.create channel() - Creates new event channels in the Naming
Service.

• Implementation.integrateData() - This function, located at the user application level,
accepts and readies data, which is to be published as an event.

• AsynchDispatcher.setData() - This Miro level function causes the publication of the
data to the event channel.

Description:

• The Base file creates a Miro server object that registers the channel and the events
with the CORBA Naming Service. It also creates an ACE Reactor task which will
function as a timer, so it will generate events at a specified frequency.

The constructor for the Reactor Task (in the exampleCConsumer file) intializes the
module such that outgoing events can be published to the specified event channel:

– Instantiates the notifyFactory object, of type EventChannelFactory var, which
has the ability to create the event channel.

– Creates an outgoing event channel object ecout, which is of type EventChan-
nel var using the notifyFactory.

– Tells the StructuredPushSupplier which EventChannel var points at the outgo-
ing event channel.

– Initializes the Implementation object with this StructuredPushSupplier.

• The Implementation object defines the integrateData() that publishes data to the
event channel using the low-level Miro AsynchDispatcher() function.

7.4 ExampleD - Subscriber to Events

Overview: ExampleD, following the Publish-Subscribe Server design pattern, subscribes
to events published by another Miro service. The structure of this module is shown if Figure
12.

Examples of this type:

28 DRDC Suffield TM 2006-115

Base

Server

Structured
PushConsumer

2)Server finds the desired
event channel in the naming
service

3)The consumer subscribes to the
desired events in the event channel
4)The consumer’s function
push_structured_event is called
each time an event occurs

1)The base creates
server and consumer
objects

Figure 12: ExampleD Structure

• drdcMiro/examples/exampleD

• drdcMiro/examples/3dmg/3dmgNotify.cpp

Typical Files:

• Base

• Consumer

Key Objects:

• Server

• EventChannel var

• PushStructuredConsumer

Key Functions:

• PushStructuredConsumer.push structured event() - This function is called every time
a subscribed event is pushed to the event channel.

• PushStructuredConsumer.setSubscriptions() - This function facilitates the subscrip-
tion to events registered with the CORBA Naming Service.

Description:

• The Base creates a server and then resolves the event channel, from which events will
be received, into the EventChannel var. It then creates a ExampleNotifyConsumer
and passes it this EventChannel var so that it can respond to events.

DRDC Suffield TM 2006-115 29

• Consumer - The Consumer inherits the push structured event() function which is
called every time an event is published on the event channel. The constructor for
the pushConsumer points the StructuredPushConsumer at the event channel defined
by the EventChannel var, and then uses the setSubscriptions() function to subscribe
to named events.

7.5 Hardware Interfacing using the Publish Server and Reactor
Design Pattern

Overview: This design pattern is commonly used to develop device drivers that interface
with physical hardware. It uses the ACE Reactor to respond to events, generated via
hardware interrupts, that signify the presence of new data. It then reads the external data,
packages the data into an IDL defined structure and uses the Miro Server to publish the
data to an event channel. The structure of device driver module is shown in Figure 13.

Figure 13: Device Driver Structure

Examples of this type:

• drdcMiro/src/3dmg

• drdcMiro/src/GpsSokkia

• drdcMiro/src/nodlaser

• drdcMiro/controlStation

30 DRDC Suffield TM 2006-115

Typical Files:

• Base

• Client(Connection)

• Event Handler

• Message

• Consumer

Key Objects:

• Base object which is a Miro Server

• ReactorTask

• Connection

• EventHandler

• Message

• Consumer15

• Implementation

Key Functions:

• eventhandler.handle input() - This function is called by the ACE Reactor every time
there is a hardware interrupt16

• eventhandler.dispatchMessage() - Alerts the Consumer that there is a new message
available

• consumer.handleMessage() - This function is called every time that the Event Handler
has created a new message

• implementation.integrateData() - This function sends data to the dispatcher class
which publishes it on the event channel

Description17:

• The Base creates and initializes many more objects than in the previous examples.
In fact, it also creates a base object to handle all of this, which none of the other
examples do. The base object, which inherits from a Miro server, does the following
in its constructor:

15This consumer is a DevConsumer, as opposed to the PushStructuredConsumer shown in Examples A
through D.

16The interrupt could represent incoming data on the ethernet or RS-232 ports
17The drdcMiro/src/gpsSokkia is used in this example. This module interfaces uses a serial port to

interface with a GPS device)

DRDC Suffield TM 2006-115 31

– Creates objects for communicating with the hardware, such as the Connection,
EventHandler, and Consumer objects.

– Creates a Miro::ReactorTask object to respond to events on the serial port. This
reactor object, and its Event Handler are then passed to the Connection object.

– Calls a number of Connection object functions that initialize the GPS.

– As in the event supplier examples above, it also sets up a StructuredPushSup-
plier, creates an outgoing event channel using EventChannelFactory and then
adds the event type to the CORBA Naming Service.

• The Client is where the Connection object code lies. The connection inherits from type
Miro::TtyConnection, which allows it to interface to the serial port. If the hardware
in question used a TCP port, it would inherit from a Miro::SockConnection. The
connection object has functions which can be called to send messages to the hardware,
such as setCommunication() and writeMessage(). These in turn rely on the function
call ioBuffer.send n() to actually send data to the hardware. The equivalent call for
a SockConnection is peer .send n().

• Event Handler - The Event Handler’s key function, handle input(), is called by the
Ace Reactor every time an event occurs on the hardware file descriptor. The han-
dle input() function reads the message into the Message class and calls the dis-
patchMessage() function to alert the Consumer that a message is ready for processing.

• The Consumer handleMessage() function is called when there is a new Message created
(i.e eventhandler.dispatchMessage() has been called). The Consumer then processes
the message into the proper IDL structure and and calls the integrateData() function
from the Implementation object to publish the event on the event channel.

• Message - For incoming data from hardware, the Message is filled with data by the
Event Handler. Accessor methods are used by the Consumer to retrieve the Message
data and process it.

7.6 Timed Event Publication

Sometimes a process, such as a localization filter, must create events at a specific rate,
regardless of inbound event rates. Miro’s basic Publication subpattern can achieve this re-
sult by inheriting from both from StructuredPushConsumer and ACE ACE Event Handler

classes. While StructuredPushConsumer provides the event response logic, ACE Event Handler

acts as an event handler for ACE timer events through the
handle timeout(const ACE Time Value&, const void *) method.

In ACE, timers are created and managed by an ACE Reactor object. Thus the first
step in making a timer is to either create an ACE Reactor object or retrieve one. For-
tunately, the Publish-Subscriber pattern has an ACE Reactor object embedded in the
Base 18 that can be retrieved through the Miro::Server::reactor() method. Using the

18The Base is derived from a Miro::Server and, therefore, contains an ACE Reactor object.

32 DRDC Suffield TM 2006-115

ACE Reactor::schedule timer() call on the ACE reactor, one can create a timer and get
a timer ID that uniquely identifies the timer to the reactor. Further, schedule timer()

accepts a (void *) argument that is passed to the event handler when the timer expires
– providing the user with a simple mechanism of filtering multiple timers within the single
event handling function,handle timeout()

The ACE Reactor object manages timers, issues events and automatically reschedules them
when they expire. When the timer expires, the ACE Reactor automatically calls handle timeout().
This overloaded function can be structured to handle multiple timers simply by examining
the (void *) (e.g. a pointer to an integer identifier) argument assigned during schedul-
ing. The standard logic can then be used to publish events through the implementation.
Note that measures (e.g. mutexes) should be taken to ensure overwriting or destruction of
variables does not occur during the timer event handling period.

Readers are directed to the ACE documentation and examples such as src/ platform/

PlatformConsumer.cpp for more detail.

8 Adding a New Service to the Automake Structure

This section describes, in detail, the steps necessary to integrate a new service into Miro.

Automake is a set of tools that automatically generates the complex Makefiles associated
with large source code projects. Although there are a few growing pains involved with using
automake, once these are overcome the power of these tools becomes obvious. This section
details how to a create a new Miro module using the example module as a guide. The
example module will be fully integrated into the automake structure allowing new code to
be compiled in the same manner as all other Miro code.

NOTE: While this tutorial is specific to Miro, much of the information learned can be
transferred to other software packages which also use AutoMake

• Create a new directory where the example service will be located

change directories to src directory of your Miro installation

cd <path>/drdcMiro/src

• Make a directory for the example driver

mkdir ex_service

• Edit Makefile.am

Open drdcMiro/src/Makefile.am with your favorite editor and locate the section which
looks as follows:

raptordirs = \

nodlaser \

DRDC Suffield TM 2006-115 33

3dmg \

gps \

raptorCommand

This statement specifies the folders which contain services to be compiled for the
Raptor Platform. You must add your directory name to this list.

NOTE: All directories except the final one in the list must be terminated with a “\”
character to indicate that there is more information on the following line.

The new statement should look something like this:

raptordirs = \

nodlaser \

3dmg \

gps \

raptorCommand \

ex_sevice

• Write the source code for ex driver

Change directories to ex driver

cd ex_service

Create a file called main.cpp

touch main.cpp

Open main.cpp with your favorite editor and copy the following code into it:

#include <stdio.h>

int main ()

{

printf("HELLO WORLD\n");

}

NOTE: The focus of this tutorial is integrating with Automake, not writing a complete
Miro service therefore the code in main.cpp will suffice:

• Setup Makefile.am for ex service

Create the file Makefile.am within the ex service directory:

touch Makefile.am

Open Makefile.am with your favorite editor and copy the following code into it:

-*- Makefile -*-

##

This file is part of Miro (The Middleware For Robots)

##

(c) 1999, 2000, 2001

34 DRDC Suffield TM 2006-115

Department of Neural Information Processing, Ulm, Germany

##

Id

$Date$

##

##

##

###

include $(top_srcdir)/config/Make-rules

bin_PROGRAMS = ExService

ExService_SOURCES = main.cpp

BUILT_SOURCES =

CLEANFILES = $(BUILT_SOURCES)

includefiles1 = $(ExService_SOURCES:.xml=.h)

includefiles2 = $(includefiles1:.cpp=.h)

ExService_LDADD = \

$(top_builddir)/lib/libmiroSvc.a \

-lmiroIDL \

-lmiro

all-local:

$(INSTALLPROGRAMS)

clean-local:

$(CLEANPROGRAMS)

This file tells automake everything it needs to create the Makefile and built the pro-
gram.

– bin Programs = ExService

This tells automake to create the executable ExService:

– ExService SOURCES = main.cpp

This tells Automake which sources to compile:

– ExService LDADD

This tells Automake which libraries are needed to compile.

In our case we only have one source file, main.cpp, which we need to compile. When-
ever new source is added to a service it needs to be added to this file in order to
compile it.

DRDC Suffield TM 2006-115 35

• Edit configure.ac

Open drdcMiro/configure.ac with your favorite editor. Scroll down until you see the
following:

AC_CONFIG_FILES([Makefile

idl/Makefile

src/Makefile

src/params/Makefile

src/makeParams/Makefile

src/abus/Makefile

src/b21Base/Makefile

src/base/Makefile

src/buttons/Makefile

src/can/Makefile

src/faulMotor/Makefile

src/faulTty/Makefile

src/image/Makefile

src/laser/Makefile

src/mcp/Makefile

src/miro/Makefile

src/msp/Makefile

src/panTilt/Makefile

src/pioneer/Makefile

src/pioneerBase/Makefile

src/playerClient/Makefile

src/playerBase/Makefile

src/nodlaser/Makefile

src/3dmg/Makefile

src/gps/Makefile

src/raptorCommand/Makefile

Now add a reference to the ex service Makefile:

src/ex_service/Makefile

• Compile your code

You should now have everything in place and are ready to compile your new code.
First we need to create a new configure file which will reflect the changes you have
just made. Issue the following command:

./bootstrap

Run the new configure script as follows:

./configure

Finally compile your code:

36 DRDC Suffield TM 2006-115

ExampleC.cpp
ExampleC.h
ExampleC.lo
ExampleS.cpp
ExampleS.h
ExampleS.lo
ExampleS.i.h

Tao CompilerExample.idl

Figure 14: The IDL Compile

make

After compiling you should be able to cd to the ex service directory and see the
program ExService. Try running it, you should get the familiar output:

HELLO WORLD

9 OMG Interface Definition Language

With a solid understanding of Miro and the its software structure, it is now possible to write
a new Miro service. A natural starting point for writing a Miro service is OMG’s Interface
Definition Language (IDL). IDL is a language used to define a CORBA object’s interfaces.
Given that CORBA is not language specific, IDL is a language of its own (similar to C++),
which is then compiled by a special IDL compiler into a particular language binding.

Miro uses the TAO19 IDL compiler to creates the C++ files required by programs that
wish to communicate via the IDL interface. Figure 14 shows the files created by the IDL
compiler for the C++ language binding.

The code listing, shown below, illustrates the similarities between IDL and C++.

//C++ code for a Person Class

struct person_traits

{

float height;

float waist;

char hair;

int age;

};

class Person

{

private:

19Where TAO is The ACE Orb, which is an open source CORBA implementation.

DRDC Suffield TM 2006-115 37

struct person_traits Traits;

public:

Person(float height, float waist, char hair, int age);

float getHeight();

float getWaist();

char getHair();

int getAge();

person_traits getTraits();

};

//IDL code for a Person Class

struct PersonTraitsIDL

{

float height;

float waist;

char hair;

long age;

};

interface Person {

void setTraits(in float height,in float waist,in char hair,in long age);

float getHeight();

float getWaist();

char getHair();

long getAge();

PersonTraitsIDL getTraits();

};

As can be seen, an IDL file bears a strong resemblance to a C++ header. Both define
a structure which holds a person’s traits that the class will store. Both define a number
of accessor methods, which can be used to set/get the traits of the object. The main
differences between the two files are that the IDL defines interfaces not classes. In addition,
parameters are declared with in/out/inout direction indicators defining the parameter as
an input, output, input/output.

The advantage of IDL is that one is able to write one interface to a CORBA object and
compile it into numerous binding including: Java, C, C++, COBOL, etc. It is language
independent, allowing interoperability between different languages. Another advantage is
that IDL effectively promotes the object oriented paradigms to be used by languages which
don’t support Object Oriented principles such as C. Finally, IDL provides mechanisms that
allow programs to share data across a network with relative ease.

IDL interfaces are used to create all of the interfaces between different software modules in
Miro. An IDL compiler is then used to map the IDL to a specific language. In our case

38 DRDC Suffield TM 2006-115

we use the TAO IDL compiler that compiles to C++ code. All of the IDLs are defined in
a single directory under Miro which can be found in drdcMiro/idl. The following examples
show idl developed for the ex service module presented in Section 8.

• Change directories to drdcMiro/idl

cd drdcMiro/idl

• Create a file for for the new IDL

touch myExample.idl

• Open myExample.idl for editing

Copy the following code into myExample.idl

#ifndef myExample_idl

#define myExample_idl

module Miro

{

struct myExampleIDL

{

char Buffer[30];

long cmdLength;

};

interface myExample {

myExampleIDL getString();

};

};

#endif

This IDL declares an interface myExample with one member function getString(),
which returns a structure called myExampleIDL. This structure contains a character
buffer that will hold a string and a long that defines the length of the string.

• Open drdcMiro/idl/Makefile.am for editing

Scroll down to the portion of the file which defines the variable globalsources and add
myExample.idl:

globalsources = \

Raptor.idl \

Time.idl \

Exception.idl \

WorldPoint.idl \

WorldVector.idl \

Position.idl \

Velocity.idl \

DRDC Suffield TM 2006-115 39

MotionStatus.idl \

Odometry.idl \

Motion.idl \

ClosedMotion.idl \

SynchroMotion.idl \

DifferentialMotion.idl \

Stall.idl \

myExample.idl

Now type make and the new idl should compile. The following files will be generated
by the TAO IDL compiler:

myExampleC.cpp myExampleC.h myExampleC.i.h myExampleC.lo

myExample.idl

myExampleS.cpp myExampleS.h myExampleS.i.h myExampleS.lo

These files represents the glue that allows your client process to obtain remote object
references from other processes. The actual implementation of this example will be
discussed in the next section.

9.1 IDL CORBA Sequences

IDLs can use structures called sequences to pass information between processes. These are
variable length arrays, similar to C++ STL vectors, used to pass data between modules20.
They are indexed much like arrays, except that they have special helper functions. For
example, you can use sequence.length() to set or retrieve the length of the sequence.

9.1.1 Declaration of Sequences in an IDL

Within the IDL file “drdcMiro/idl/Example.idl” you will see such a structure:

struct ExampleStructIDL // Declaration of a simple structure

{

double a;

double b;

};

// This defines a type of sequence, or variable length array,

// of the first structure

typedef sequence<ExampleStructIDL> ExampleListIDL;

// A higher level structure which contains an instance of the sequence

// and another variable

struct ExampleGroupIDL

20Note: Pointers and dynamic C++ STL constructs cannot be used with an IDL.

40 DRDC Suffield TM 2006-115

{

int c;

ExamleListIDL PointList;

};

9.1.2 Using CORBA Sequences within Modules

The module, which produces the data to fill in the structure, first sets the sequence length
and then populates the data structure:

// Declares a structure of the type in the IDL

ExampleGroupIDL examplegroup;

examplegroup.c = 11;

// Set the length of the sequence in the structure

examplegroup.PointList.length(2);

// Fill in the values contained in the sequence

examplegroup.PointList[0].a = 22;

examplegroup.PointList[0].b = 33;

examplegroup.PointList[1].a = 44;

examplegroup.PointList[1].b = 55;

At this point, the Miro service can publish this data to the event channel. In order to
retrieve the data, the receiving program might use something like the following:

// Declares a structure of the type in the IDL

ExampleGroupIDL receivedgroup;

// This retrieves the length of the sequence

int counter = receivedgroup.PointList.length();

// For example,

// the sequence data has some simple operations performed on it

for (int i =0; i < counter)

{

++receivedgroup.PointList[i].a;

double test=receivedgroup.PointList[i].a*receivedgroup.PointList[i].b;

}

DRDC Suffield TM 2006-115 41

10 Parameter Files

Miro uses the makeParam utility to build default parameter sets for a module from an XML
file. An XML parser is also generated from the XML file which allows parameters to be
loaded into the module at runtime from a seperate XML file. This allows the developer to
make changes to the software configuration without having to recompile the software.

The essential steps to building a set of parameters and a parser are:

1. Construct a compile-time Parameter.xml file which declares any parameters used by
the module and assign default values to them.

2. “Compile” this file using makeParams to generate Parameters.h and Parameters.cpp

files. This can be setup in Makefile.am so that it occurs when your application is
built.

3. Build your application.

4. Construct a run-time parameter file called <hostname>.xml. This file holds the
necessary parameters for your process.

The following example illustrates the above steps:

To represent geometry on a vehicle, it is necessary to describe the position of many devices,
some of which will be repositioned between trials. An XML configuration file is used to set
up the location of these devices using a 3x1 position vector. This could be accomplished
using three individual parameters, one vector, a set composed of three entries, or a string
holding three numbers. Here we use a vector.

10.1 Compile-Time Parameter Files

Compile-Time parameter files describe the parameters that your process would like to ex-
ploit within Run-Time files. Basically, the compile-time file and makeParams creates code
that will automatically parse XML and place the results into C++ structures.

The structure of the compile-time parameter file is typical XML. Consider the example
Parameter.xml file:

1 <!DOCTYPE xml SYSTEM "PolicyEditor_behaviour.dtd">

2 < config>

3 <config_global name="namespace" value="Test" />

4 <config_global name="include" value="miro/SvcParameters.h" />

5 <config_global name="include" value="vector" />

6 <config_group name="test">

7 <config_item name="My" parent="Miro::Config" instance="true" >

8 <config_parameter name="TestVector" type="std::vector<int>" />

42 DRDC Suffield TM 2006-115

9 <config_parameter name="TestInteger" type="int" default="1"/>

10 </config_item>

11 </config_group>

12 </config>

Parameters are grouped through opening and closing symbols. The config file opens with
a document type header, typically something like line 1 above. This is followed by the
configuration data block, always within the <config></config> pair. Note that a ’slash’
denotes the closure of an XML block.

The configuration data is used to configure the structure of C++ source files, so the next
block is a series of statements for namespace declarations and #include files. To work with
Miro’s parameter system, one must include SvcParameters.h21. If either Sets or Vectors
are being used, their headers must also be included. Since makeParams can be instructed
to read and output filenames of the users choice, there is no need to place all parameter
definitions into a single file. Modular Parameter definitions can be generated and included
much like C++ headers (e.g. SvcParameters.h is machine generated).

The next block describes the data to be used at run-time and is contained within a
<config group></config group> pair. The config group name on line 6 becomes the
’Section’ name in the run-time XML file.

Line 7 describes the config item name, parent and instance.

name is the name of the Parameter class you will make and will be appended by “Pa-
rameters”. In this example, the compiled XML file will produce Parameters.h that
contains a class called MyParameters, that will ultimately hold the parameters read at
run-time. Dropping the name simply produces “Parameters” as the class name. This
is handy, because it means you have some control over Parameter Class naming and
can generate multiple different parameter parsers within the same XML compile-time
file.

parent identifies the parent class of the parameter class you are defining. To work in
the Miro system, it must ultimately inherit from Miro::Config. Of course you must
include the necessary headers, too, hence the inclusion of SvcParameters.h.

instance is a boolean value (i.e. “True” or “False”) that determines whether Miro should
permit multiple instances of this parameter set (“False”) or simply permit multiple use
of a single instance(“True”). In general, setting this to “True” is the safest strategy.

Line 8 shows the use of the “default” field in the creation of the TestInteger parameter. Any
time this value does NOT appear in a run-time file, the value of config.testInteger will
be 1. Note that the config item identifier of Line 7 is closed at the end of the parameter
definitions in typical XML fashion in Line 10.

21SvcParameters contains a series of “service” parameter types and ultimately includes Miro::Config

DRDC Suffield TM 2006-115 43

Finally, the parameter definitions follow config parameter with name, type and others,
(see the Miro manual):

name is the name of the Parameter. If config item name is the name of the class
described by this file, config parameter name is the name of the data member within
the class.

type identifies the type of parameter, usually simple types (e.g. double or int) see the Miro
manual for the full list. However it is possible to declare more elaborate structures as
is done in this example.

The parameter item, group and block sections are then closed as mentioned earlier.

10.1.1 Helpers

There are limits to this compile-time system, however. Creating default values for some
data structures pose problems for makeParams. In such cases, makeParams parses a
<constructor></constructor> pair that contain C++-like source code assigning default
values. A good example of this approach can be found in the compile-time Parameter file
maps/terrain/Parameters.xml and the helper src/miro/MapDescriptionHelper.cpp.
Helpers are a stop-gap solution and can be difficult to build without an existing exam-
ple.

For example, suppose you wish to assign a vector of integers with default values. Us-
ing traditional makeParam syntax this is impossible, however using a Helper file and a
<constructor></constructor> pair, this becomes possible.

10.2 Parsing Run-Time Parameter Files

Once the compile time XML file has been generated and the module compiled, the default
parameters can be overridden by passing a run time XML file to the module. This is done
using the following code:

1 Test::MyParameters * params = Test::MyParameters::instance();

2

3 try

4 {

5 Miro::ConfigDocument * config = new

Miro::ConfigDocument(argc, argv);

6 config->setSection("test");

7 config->getParameters("Test", *params);

8 delete config;

9 }

10 catch (const Miro::CException& e)

11 {

44 DRDC Suffield TM 2006-115

12 cerr << "Miro exception: " << e << endl;

13 rc = 1;

14 }

Line 1 declares an instance of MyParameters using the instance() operator, available to
us since we declared instance= "True" in the XML file. In the try block, The parameter
file is read into the config variable and pointed at the portion of interest (“test”). The
parameters are then loaded into the variable params in line 7. Finally, the config variable
is deleted once the parameters have successfully been read.

Note: the default filename which the module looks for is <hostname>.xml. Other files can
be used using the “-MiroConfigFile” command line option (See the Miro Manual).

From this point on the variable params contains the parameters we want.

Note: All parameter names must begin with a captial letter in the runtime XML file while
all parameter names in Parameters.h will begin with a lowercase letter regardless of how
they were defined in the XML file. In practice it is best to always capitalize the first letter
in both XML files.

10.3 Run-Time Parameter Files

After building the code and compiling, it is time to construct a run-time XML file such as
the following:

1<config>

2 <section name="test">

3 <parameter name="Test">

4 <parameter name="TestVector">

5 <parameter valueA="2" />

6 <parameter valueB="4" />

7 <parameter valueC="2" />

8 <parameter valueD="5" />

9 </parameter>

10 </parameter>

11 </section>

12</config>

The structure is very similar to the compile-time version, but carefully note the grouping
of parameters with matching open/close statements. Furthermore, the end bracket of line
4 has no slash, meaning the parameter expression is not terminated. For both Vectors and
Sets, the <parameter name...> entry is followed by as many <parameter value=" "/>

expressions as necessary. Note that, without exception, all parameters values are enclosed
in quotes in the XML file.

DRDC Suffield TM 2006-115 45

10.4 Nested Data Structures

Datatypes such as int, double, std::string, vector, and set are useful for most situ-
ations, but sometimes it is necessary to structure parameters further. Nested structures
can be built through careful use of compile-time XML files to accomodate these situations.
Consider the example below (the headers have been removed for space):

<config_item name="Matrix" parent="Miro::Config" final="false" >

<config_parameter name="Row1" type="std::string" />

<config_parameter name="Row2" type="std::string" />

<config_parameter name="Row3" type="std::string" />

</config_item>

<config_item name="BodyFrame" parent="Miro::Config" final="false" >

<config_parameter name="FrameName" type="std::string" />

<config_parameter name="HTransform" type="MatrixParameters" />

</config_item>

<config_item name="Body" final="false" parent="Miro::Config" >

<config_parameter name="BodyName" type="std::string" />

<config_parameter name="HTransform" type="MatrixParameters" />

<config_parameter name="Frames" type="std::vector<BodyFrameParameters>" />

</config_item>

In this example three structures have been created, a Matrix, a BodyFrame, and a Body.
Note that the BodyFrame contains a Matrix while the Body contains both a Matrix and a
vector of type BodyFrame.

Some important points to note:

• all structures inherit from Miro::Config.

• a type with a config item of name becomes nameParameters when nested in other
structures.

• nesting can be of arbitrary depth.

The greatest difficulty with nested parameters lies in the run-time file construction, which
can easily become confusing as illustrated in the following example which creates a Body
name Raptor with two BodyFrames:

<parameter> <!-- Body -->

<parameter name="BodyName" value="Raptor"/> <!-- BodyName -->

<parameter name="HTransform" > <!-- HTransform -->

<parameter name="Row1" value="1.00 0.00 0.00 0.00" />

<parameter name="Row2" value="0.00 1.00 0.00 0.00" />

<parameter name="Row3" value="0.00 0.00 1.00 5" />

46 DRDC Suffield TM 2006-115

</parameter> <!-- end of HTransform -->

<parameter name="Frames" > <!-- FrameList -->

<parameter> <!-- BodyFrame -->

<parameter name="FrameName" value="CG"/> <!-- Frame -->

<parameter name="HTransform" > <!-- HTransform -->

<parameter name="Row1" value="1.00 0.00 0.00 0.00" />

<parameter name="Row2" value="0.00 1.00 0.00 0.00" />

<parameter name="Row3" value="0.00 0.00 1.00 0.00" />

</parameter> <!-- end of HTransform -->

</parameter> <!-- end of BodyFrame -->

<parameter> <!-- BodyFrame -->

<parameter name="FrameName" value="CabRailCentre"/> <!-- Frame -->

<parameter name="HTransform" > <!-- HTransform -->

<parameter name="Row1" value="1.00 0.00 0.00 0.00" />

<parameter name="Row2" value="0.00 1.00 0.00 0.00" />

<parameter name="Row3" value="0.00 0.00 1.00 5.00" />

</parameter> <!-- end of HTransform -->

</parameter> <!-- end of BodyFrame -->

</parameter> <!-- end of FrameList -->

</parameter> <!-- end of Body -->

Comments, using the angle bracket notation <!-- comment here --> can be used to clarify
the XML structure. Great care must be taken to ensure list types are properly opened (i.e.
“no slash on the parameter”) and closed. Note that the Matrix type uses std::string

instead of vectors of doubles. A major problem with the Miro Parameter system is the
dependence on quoted parameter values. This forces each vector or set element to be a
single parameter entry and makes XML parameter files very large and difficult to read. In
this case, the solution was to collapse rowvectors into a single string, parsed later in the
C++ source.

11 Using Qt and Miro

Qt is a cross-platform graphical user interface library sold commercially by Trolltech, but
available for noncommercial use for free. This manual will not cover how to construct Qt
interfaces, but will address some of the “mating” issues common to Qt and Miro. Some of
these issues are addressed within the original Miro manual.

Just as Miro has a limited number of design patterns, Qt and Miro generally use two
design patterns. Miro provides two basic services through its IDL interfaces, Polling and
Publishing. To present Polled data graphically in Qt simply requires placing the correct
Miro polling code within the appropriate event loop (e.g. when a button is pressed). Miro’s
native Qt examples fully capture this method and the reader is directed to study both the
Miro Manual, the source code and make files for guidance and insight.

DRDC Suffield TM 2006-115 47

A more difficult problem involves presenting events to the Qt interface. Like any interface
engine, Qt runs an internal event loop that services graphical interactions such as a but-
tondown event, slider event, or other widget event. Miro’s Consumer runs a similar event
loop to service inbound subscribed events on the eventchannel. To permit these two loops
to function requires two steps:

1. create a Qt Process that, in turn, creates and detaches a Miro consumer into a
separate thread.

2. create a Qt Event that invokes a Qt customEvent() method to update the interface.

The reader is directed to the qtEventImu application in the utils/qtEventImu directory.
This simple application subscribes to Imu events and updates an interface as each event
arrives. Some special notes:

1. Possibly due to unexpected deletion of resources in the Miro thread, CORBA types
do not cross the Miro/Qt boundary without corruption. In any case, the solution is
to copy the event contents into a substitute type and passing this allocated type to
Qt.

2. The ’connection’ between the Qt and Miro threads is made through a call to the
QApplication object’s postEvent() method. This method, in turn, calls the over-
loaded customEvent() method that contains the actual UI update code.

3. If events come in too quickly for Qt to process (a remote possibility), then it may
be necessary to pull the postEvent() method out of the push structured event()

handler and use a timer to house this call instead. See the “Timed Event Publication”
section for more detail.

11.1 QtDesigner with Miro

Not surprisingly, hand coding Qt can be tedious, making Trolltech’s QtDesigner UI builder
software very tempting. This section describes how to use Designer within the Miro frame-
work and assumes the reader is familiar with the Designer package and output file structure.

Qt relies on qmake to build makefiles and ultimately compile QtDesigner generated code.
Unfortunately, there is no easy way of forcing the automake tools and qmake work together
seemlessly. However, QtDesigner’s file structure is simple enough that it can be forced to
live within Miro’s automake environment.

To keep things neat and tidy, put all graphical elements in GUI subdirectory of your appli-
cation.

1. In your source directory, create a GUI subdirectory.

2. Using QtDesigner, create a project in the GUI directory. Build your GUI as you see
fit, modifying all the *.ui.h components as necessary.

48 DRDC Suffield TM 2006-115

3. Add all the necessary includes to the .ui.h files if necessary, but don’t bother with
libraries.

4. Save the project into the GUI directory which will then contain a *.pro, *.ui and,
possibly, *.ui.h files.

5. At this point the interface can be compiled into the Miro structure two ways, by hand
or through abuse of qmake.

(a) To manually create the *.h and *.cpp files from *.ui:

i. type the commands:
uic <myForm>.ui -o <myform>.h

uic <myForm>.ui -i <myform>.h -o <myform>.cpp
...where <myform> is the name of your form. These will create the *.h and
*.cpp files from the *.ui file

(b) ...OR you can abuse qmake to achieve the same thing, albeit contained in a
hidden directory:

i. qmake the project to construct the ’Makefile’

ii. make the project to generate the necessary .cpp files. Make will try, but
fail, to compile the code. That’s OK, because all you really wanted were
the .h and .cpp files in the (hidden) .ui directory anyway. To see the hidden
directories Qt Designer has made, type:
ls -a

6. A satisfactory UI can be incorporated into Miro using the standard Makefile QT
template (put *.h under sources and *.cpp under tomocsources) being sure to use the
correct relative path locations.

Remember to include all the contents of the hidden .ui subdirectory in any CVS version of
the GUI directory.

11.2 Contributing QtDesigner Widgets to the Widgets Library

If you want to contribute widgets to the ”widgets library” then:

1. Open the *.cpp files (in the .ui directory if you used the qmake method) and hunt for
all references to *.ui.h files.

2. Cut/Paste the contents of these *.ui.h files into the .cpp files. 22

3. Copy <myform>.cpp files and <myform>.h headers to utils/widgets, but NOT
<myform>.moc.cpp or moc <myform>.cpp files. These will be autogenerated from
the <myform>.h files during the widget make.

4. Add the filenames to the Makefile.am (put *.h under sources and *.cpp under tomoc-
sources) and type:

make
22Technically these first two aren’t necessary, but then you’d have to copy the *.ui.h files into the widgets

directory, too.

DRDC Suffield TM 2006-115 49

References

[1] Broten, G., Monckton, S., Giesbrecht, J., Verret, S., Collier, J., and Digney, B. (2004),
Towards Distributed Intelligence - A high level definition, (DRDC Suffield
TR 2004-287) Defence R&D Canada – Suffield.

[2] Broten, G., Monckton, S., Giesbrecht, J., and Collier, J. (2006), Software Engineering
for Experimental Robotics, Number DRDC Suffield SL 2005-227, Ch. UxV Software
Systems, An Applied Research Perspective, Springer Tracts in Advanced Robotics.

[3] Department of Computer Science, University of Ulm (2005), Miro Manual, 0.9.4 ed,
University of Ulm, Ulm, Germany.

[4] Szyperski, C. (1998), Component Software: Beyond Object-Oriented Programming,
Addison-Wesley, Reading, MA.

[5] Vesperman, Jennifer (2003), Essential CVS, First edition ed, O’Reilly & Associates,
Inc., Sebastopol, CA.

[6] Gerkey, Brian, Vaughan, Richard T., and Howard, Andrew (2003), The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems, Proceedings of the
11th International Conference on Advanced Robotics, University of Coimbra, Portugal,
pp. 317–323.

50 DRDC Suffield TM 2006-115

Annex A: CVS Protocol

Both DRDC Miro and ULM Miro are labeled as separate modules in the Defence R&D
Canada – Suffield Concurrent Versioning Software (CVS) system. They are labeled drd-
cMiro and ulmMiro respectively. Instructions on checking out sandboxes of these reposito-
ries is listed in Sections 2.5 and 2.6. However, in order for drdcMiro to compile correctly
the proper version of ulmMiro must be updated and compiled. Below are the instructions
for a user that has access to the Miro code directly from ULM to update their code, im-
port it into DRDC’s version of the ULM code along with tagging, labeling, merging the
appropriate repositories so that drdcMiro will still compile with ulmMiro.

The ULM code has already been imported into the Defence R&D Canada – Suffield CVS
repository, therefore, the following three steps are unnecessary. However, if you were im-
porting code for the first time you would do the first two steps and every time you wanted
to check out a fresh sandbox you would do the third step.

1. Import the initial release from the vendor into our CVS repository. In the example
below we’re importing from the vendor vendorName the release named vendorRe-
lease v1 0 into the project users/sverret/testProject. You must be in the directory
you want to import to in order for this command to work. Also you don’t want to im-
port any binaries or other files, so ensure you’ve done a new checkout or downloaded
a fresh .tgz of their release before importing (i.e. ensure that what you’re importing
is fresh).

cvs -d :ext:username@mao:/usr/local/cvsroot \

import -kk users/sverret/testProject vendorName vendorRelease_v1_0

2. After the initial import we will tag the version as our own. To do this we need to use
a release number that we understand. In the example below we use the release tag
drdcRelease v1 0

cvs -d :ext:username@mao:/usr/local/cvsroot \

rtag -r vendorRelease_v1_0 drdcRelease_v1_0 users/sverret/testProject

3. Finally check out the repository HEAD:

cvs -d :ext:username@mao:/usr/local/cvsroot \

checkout -kk users/sverret/testProject

It is important to realize that the directory created on your personal computer is
just a Sandbox for you to experiment in and play with. Once you’ve created your
”sand castle” and you feel everything is correct (i.e. you’ve compiled and tested your
changes), then and only then should you commit your changes to the repository which
resides on the CVS server mao.

** NOTE It is possible to check out the vendor’s code by typing the command

cvs -d :ext:username@mao:/usr/local/cvsroot \

checkout -kk -r vendorRelease_v1_0 users/sverret/testProject

DRDC Suffield TM 2006-115 51

but a user will NOT be able to commit files from this checkout, because it is NOT a
branch but a sticky tag.

The normal procedure for importing code is below. This procedure assumes that the current
ULM release in the repository is ulm v1 4. Once the new version of code from ULM is
imported it will take on the version number ulm v1 5. Similarly this procedure assumes
that the current version of DRDC’s code is drdc v1 4. On the way to drdc v1 5 we will use
the release number drdc v1 4 1 to signify a version between drdc v1 4 and drdc v1 5.

1. Locate your ULM Miro code directory that contains ULMs code FROM ULM. In
this example it will be called miroFromUlm. Next update your code with the latest
updates.

cd /PATH/miroFromUlm

cvs update -Pd

2. If there were changes to the ULM Miro code from ULM then before we import any-
thing into the ulmMiro repository we first need to label it.

cd /PATH/ulmMiro

cvs tag -c drdc_v1_4_1

OR

cvs -d :ext:username@mao:/usr/local/cvsroot \

rtag -r HEAD drdc_v1_4_1 projects/cohort/miro

which automatically tags the HEAD with the label drdc v1 4 1. The difference be-
tween the two methods is the -c option in the first method that first checks if any
files need to be committed before tagging the HEAD, whereas the second option can
be run from anywhere and thus tags the HEAD automatically.

3. Import the code into the Defence R&D Canada – Suffield CVS ulmMiro repository
using appropriate vendor tags and release tags.

cvs -d :ext:username@mao:/usr/local/cvsroot import -kk \

projects/cohort/miro ulm ulm_v1_5

Replace username with an appropriate name, e.g. sverret. The vendor tag in this
instance is ulm while the release tag is ulm v1 5. Ensure that the release tag you use
HAS NOT BEEN USED BEFORE and increments from the previous tag.

4. The results of the previous command will most likely yield some sort of conflict. You
will probably get an output similar to this:

C projects/cohort/miro/file1.txt

U projects/cohort/miro/.cvsignore

1 conflicts created by this import.

Use the following command to help the merge:

cvs -d :ext:sverret@mao:/usr/local/cvsroot checkout \

-j<prev_rel_tag> -julm_v1_5 projects/cohort/miro

52 DRDC Suffield TM 2006-115

In this text they will give you an example command to try and workout the conflicts.

5. To work out conflicts you need to checkout another sandbox which merges the changes
between two different versions. This exact command is given below with commentary.

cvs -d :ext:sverret@mao:/usr/local/cvsroot checkout \

-jdrdc_v1_4_1 -julm_v1_5 projects/cohort/miro

This command will merge the differences between the files labeled drdc v1 4 1 and
ulm v1 5 and checkout a new sandbox containing the merged results. If you’re lucky
you’ll get a result like this:

cvs checkout: Updating projects/cohort/miro

U projects/cohort/miro/file1.txt

RCS file: /usr/local/cvsroot/projects/cohort/miro/file1.txt,v

retrieving revision 1.1

retrieving revision 1.1.1.6

Merging differences between 1.1 and 1.1.1.6 into file1.txt

projects/cohort/miro/file1.txt already contains \

the differences between 1.1 and 1.1.1.6

If not, you might see conflicts which require fixing. In this case you will have to find
the file, review what has been merged, and make the corrections.

A script that looks for the words ”already contains” or ”rcsmerge” or ”conflict” or
”Merging” to see if there were conflicts would be nice to tell you which files had the
conflicts.

** NOTE The numbers 1.1 and 1.1.1.6 have nothing to do with the numbers we
used to tag various releases, e.g. drdc v1 4 1.

6. Once all conflicts are fixed, and you must make and test your changes by first of all
making

./bootstrap

./configure

make

and then testing by compiling drdcMiro. Finally, you must commit the files you
changed. You can do this by typing in the root directory of the sandbox:

cvs commit

After committing all of the changes it’d be useful to now tag the HEAD as a new
drdc release.

cvs tag -c drdc_v1_5

It’s nice to have the DRDC release number correspond with the ULM release number
we used at the start.

A situation may also arise such that we would like to change ULM’s Miro code and submit
it back to ULM for adoption. Below lists the procedure to do this:

1. First you need to make a patch file and you need to follow the following steps.

DRDC Suffield TM 2006-115 53

cvs tag -c drdcPatchTo_v1_5

The above command labels the HEAD of the ulmMiro repository with the label drd-
cPatchTo v1 5.

2. Next we want to create the patch file.

cvs -d :ext:sverret@mao:/usr/local/cvsroot rdiff \

-r ulm_v1_5 -r drdcPatchTo_v1_5 projects/cohort/miro > v1_5.patch

This creates the file v1 5.patch which can be mailed to ULM along with a request to
patch their repository.

54 DRDC Suffield TM 2006-115

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (the name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Suffield
PO Box 4000, Station Main, Medicine Hat, AB,
Canada T1A 8K6

2. SECURITY CLASSIFICATION
(overall security classification of the
document including special warning terms if
applicable).

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C,R or U) in parentheses after the title).

AISS Miro Manual: A Rough Guide (U)

4. AUTHORS (last name, first name, middle initial)

Giesbrecht, J.; Collier, J.; Broten, G.; Verret, S.; Monckton, S.

5. DATE OF PUBLICATION (month and year of publication of
document)

December 2006

6a. NO. OF PAGES (total
containing information.
Include Annexes,
Appendices, etc).

66

6b. NO. OF REFS (total
cited in document)

6

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the
type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

Technical Memorandum

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development.
Include address).

9a. PROJECT NO. (the applicable research and development
project number under which the document was written.
Specify whether project).

9b. GRANT OR CONTRACT NO. (if appropriate, the applicable
number under which the document was written).

10a. ORIGINATOR’S DOCUMENT NUMBER (the official
document number by which the document is identified by the
originating activity. This number must be unique.)

DRDC Suffield TM 2006-115

10b. OTHER DOCUMENT NOs. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security
classification)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution beyond the audience specified in (11) is possible, a wider
announcement audience may be selected).

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

The Autonomous Land Systems (ALS) and Cohort projects undertaken by the Autonomous In-
telligent System Section (AISS) at Defence R&D Canada – Suffield research and develop au-
tonomous unmanned vehicles. A software architecture provides a common software framework
allowing researchers to easily implement, test, and share their research or algorithms. After a
thorough review of existing robotics toolkits, the “Miro” framework was chosen as a basis on
which to build DRDC’s Architechture for Autonomy. This document gives the reader background
on “Miro” and the detailed procedure used to install the toolkit and all associated applications.
Second, the basic concepts of “Miro” are described including the Interface Definition Language,
Naming Service, Polled Mode Data Transfer, Event Driven Data Transfer and the Miro Directory
Structure. Third, various “Miro” utilities and several “Miro” examples are described. Finally, more
detailed “Miro” examples including how to add services to the Automake structure, the OMG
Interface Definition Language and Parameter Files are discussed.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified.
If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title).

Miro, multi-robot systems, autonomous robots, CORBA

	FrontMatter.pdf
	Abstract
	Résumé
	Executive summary
	Sommaire
	Table of contents

	Text3: Unlimited

